

UNIVERSITY OF ALBERTA SCHOOL OF PUBLIC HEALTH

Risk-Based Targets for Design & Management of On-site Systems

Nicholas Ashbolt (Ashbolt@Ualberta.ca)

2014 Southwest Onsite Conference Laughlin, Nevada January 30, 2014

Clean Water Act and Safe Drinking Water Act: Costly and Outdated

- Fundamental problem: focus is on centralized system impacts
 - -Poorly addresses 'secondary' upstream (on-site) impacts
 - E.g. Cape Cod is reinvoking an old 208 wastewater management planning process to deal with on-site caused eutrophication
 - From a health point of view focus is on coliforms, which can easily be removed but leave pathogens (enteric viruses, protozoa & post-treatment environmental pathogens and antibiotic-resistance gene issues)

Solution – System's Understanding so:

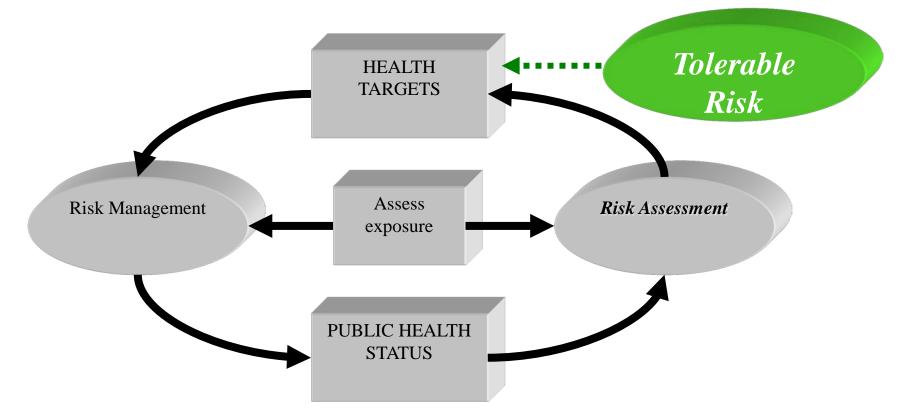
- 1. Promote more sustainable systems, and
- 2. Manage safe water (reuse)

Current water quality targets for water reuse

Californian Title 22 (1978, 2007)

- Specifies treatment steps (with described log-reductions by unit processes), requiring:
 - -5-log₁₀ virus reduction based on piking studies¹
 - Performance-based but by process type, not on-site
 - -NTU <2 (daily average) & chlorine 1 mg/L

i.e. process-based targets

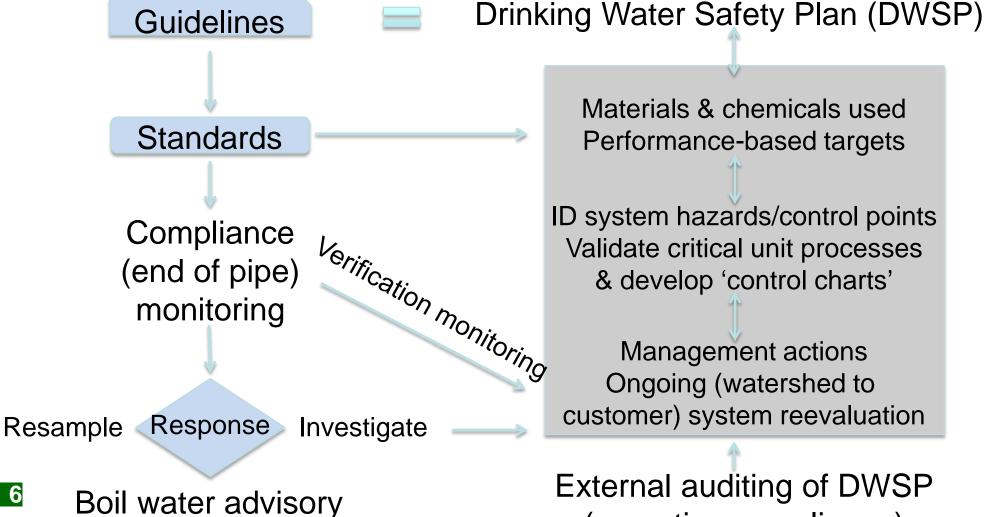

-Total Coliforms (<2.2 MPN/100 mL) as a **[poor]** overall index of treatment performance

¹F-RNA coliphage MS2 (ATCC 15597B1, grown on *E. coli* ATCC 15597), poliovirus or other that is at least as resistant as poliovirus (based on Pomona Virus Study [Nellor *et al.* 1994])

Major international microbial criteria for non-potable reuse (by 1995)

Parameter	Title 22	Arizona	NSW - Australia	Israel
Designated treatment train	Yes	Yes	Multiple barriers	No
Total coliforms / 100 mL	< 2.2 MPN		<10 (90%ile) into distribution <2.5 (50%ile) at point of use	< 1000
Fecal coliforms/100 mL			< 1	-
Viruses	5-log ₁₀ reduction in spiking studies ⁵	<125/40 L restricted <1/40 L open use	<2/50 L	-
Parasites		<1/40 L	<1/50 L	< 1 ova/L
Turbidity (NTU)	<2 (daily average)		<2 50%ile <5 95%ile	-
Color (total color)	-	-	<15	-
Chorine residual	1 mg/L	-	5 mg/L at first reservoir, 2 mg/L at customers	-

WHO & Australian Risk management framework (post 2000)



Fewtrell & Bartram (2001) Water Quality: Guidelines, Standards and Health. Risk Assessment and Management for Water
Related Infectious Diseases, WHO, Geneva

Transitioning from Stds & Guidelines to WSP framework

6

ID system hazards/control points Validate critical unit processes & develop 'control charts'


WSP proactive management

of Drinking Water (Alberta)

Management actions Ongoing (watershed to customer) system reevaluation

External auditing of DWSP (proactive compliance)

Key issue: Hazardous events

- System's approach to identifying & managing enteric pathogen risks depends upon:
 - -ID and control of short-duration hazardous events throughout the system; via
 - -Surrogate target levels (at control points)

Percent of exceedances missed for different sampling frequencies

Sampling frequency	Missed exceedances (%)	
5 days per week (weekdays)	20%	
3 times per week	45%	
Once per week	75%	
Once per moth	95%	

Leecaster and Weisberg (2001) Marine Pollut Bull 42(11): 1150–1154

What is appropriate for on-site systems?

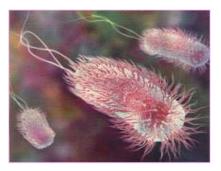
Possible Questions:

- 1. Use a Title 22-like approach and characterize system types for pathogen reduction?
- 2. What is the end-point of acceptability based on?
 - Current coliform criteria not health-based
- 3. How to administer on-site performance?

Possible answer:

 Risk-based criteria based on a water safety plan approach

Quantitative Microbial Risk Assessment (QMRA): Regulatory & operational uses

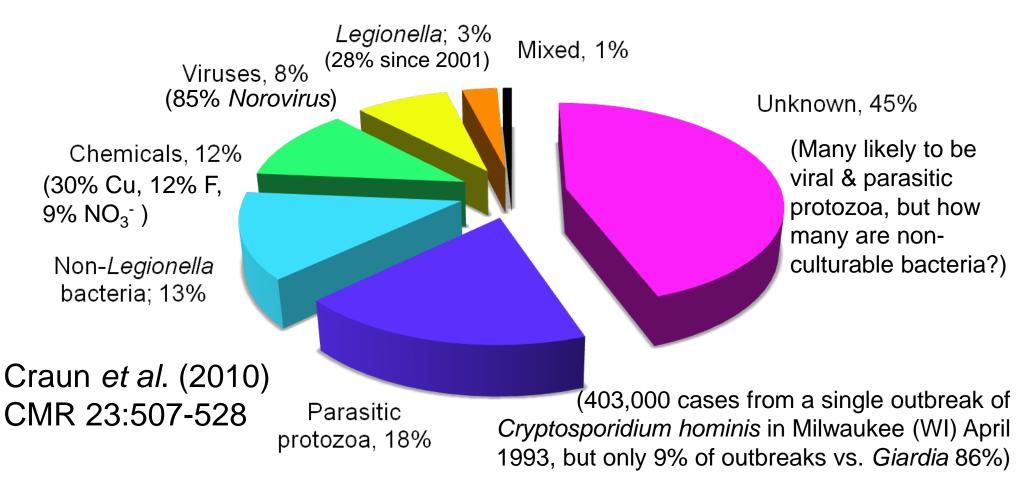

- Recently WHO & EPA have set water criteria and/or treatment requirements based on QMRA
 - e.g. 3 & 4 log reductions in Drinking Water (DW) parasites & viruses, respectively
- Risk-based targets (also provide QMRA goal)
 - -Not current EPA policy: DW < 1 infection 10⁻⁴/year
 - -WHO/Australia: DW & reuse: < 10⁻⁶ DALY/year
 - -EPA policy: rec water < 32-36 NGI/1000 people.day


Recreational water quality criteria: The only health-based water criteria i.e. from epidemiology studies

Indicator

Exposure

Outcome



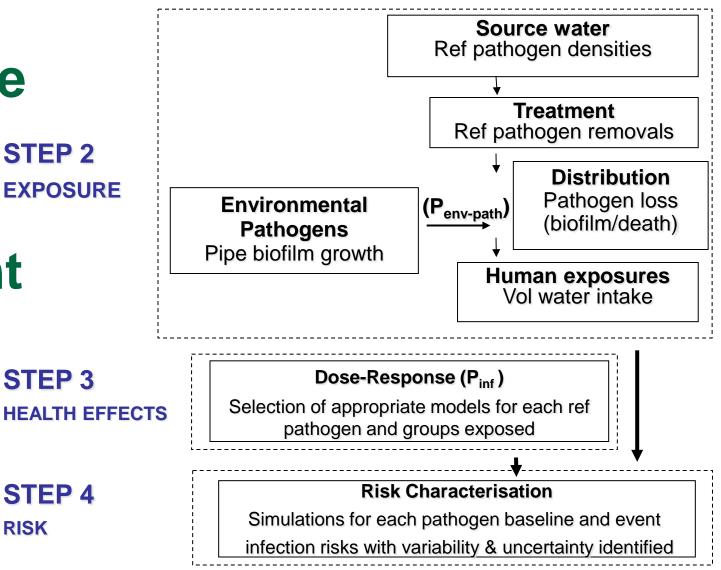
Etiologic agents & percentages for 780 drinking water outbreaks, 1971-2006 USA

Public health hospital costs from USA drinking water exposures

- CDC estimate drinking water disease costs > \$970 m/y
 - –Less so fecal pathogens, largely Legionnaires' disease, otitis externa, and non-tuberculous mycobacterial causing >40 000 hospitalizations/year

Disease	Annual costs	
Cryptosporidiosis	\$46M	
Giardiasis	\$34M	
Legionnaires' disease	\$434M	
NTM infection/Pulmonary	\$426M/ \$195M	

Collier et al. (2012) Epi Inf 140: 2003-2013

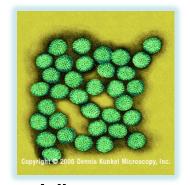

STEP 1 SETTING

RISK

Problem formulation & Hazard identification Describe physical system, selection of reference pathogens and identification of hazardous events

Quantitative microbial **STEP 2 EXPOSURE** risk assessment (QMRA) **STEP 3**

14


On-site QMRA model

> STEP 1 SETTING

Hazard identification & its setting

Describe physical system, selection of reference pathogens & identification of hazardous events

'Pathogens' versus specific system surrogates Pathogens



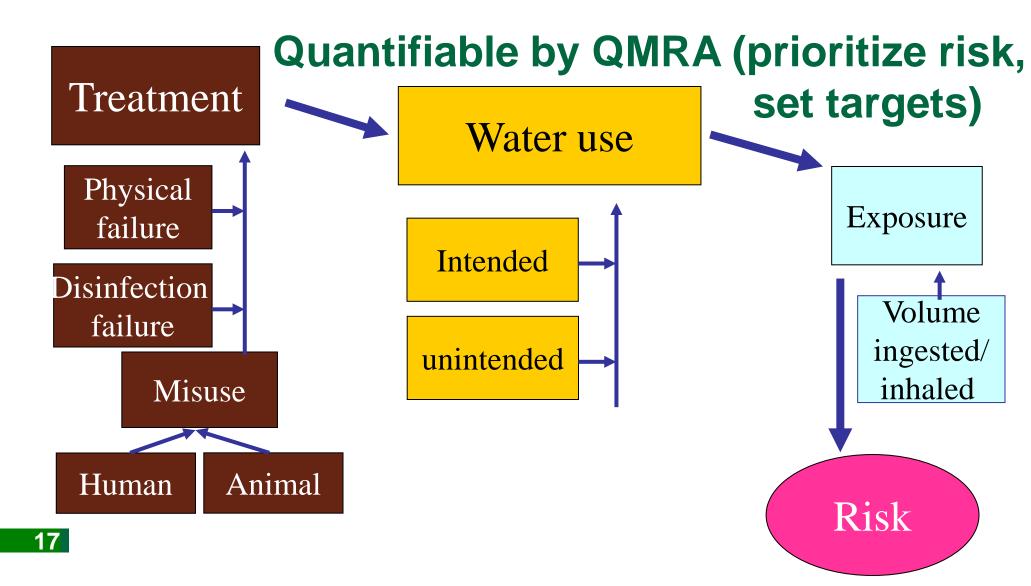
Viruses Reference: (*Norovirus*) Bacteria

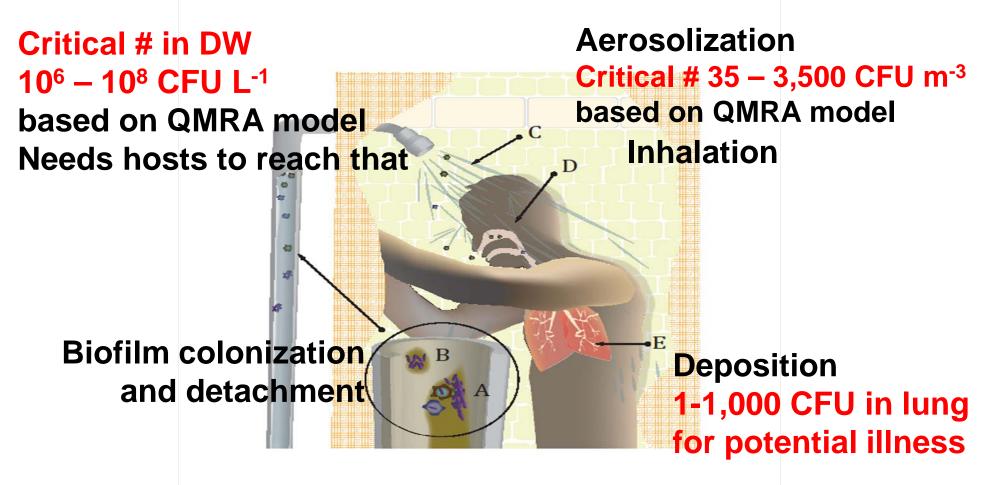
Parasitic protozoa (Campylobacter) (Cryptosporidium)

Surrogates for different system barriers

Phages

(e.g. Bacteroides)

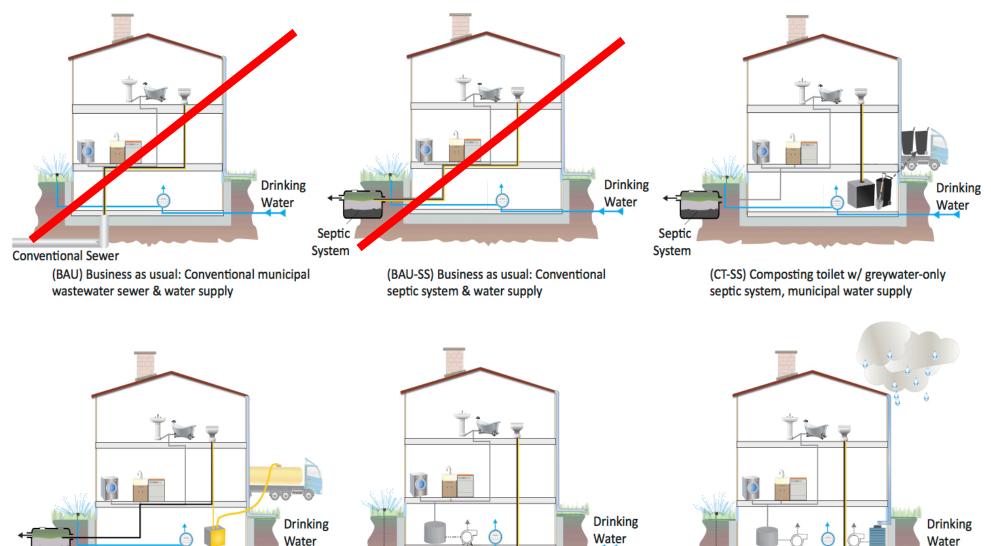

E. coli + coliphages


Clostridium perfringens spores

Hazardous events at on-site system:

Example: QMRA for critical *Legionella* densities

Schoen & Ashbolt (2011) Water Research 45(18): 5826-5836


Rationale for indicator qPCR vs pathogen detection – a numbers game (~ 100-fold) Ashbolt *et al.* (2010) Wat Res **44**:4692-4703

- Target pathogen density (rec water 0.03 GI risk swim⁻¹)
 - -e.g. for one of the most numerous known pathogens:
 - 9 Norovirus genomes L⁻¹ of rec water → 0.03 GI risk

Changing *Norovirus* morbidity based on infection from best estimate 0.6 to 0.1 increases the target density **to 80** *Norovrius* genomes L⁻¹ (half to a tenth if recovery accounted for)

- Bacteroides HF183 target for same level of contamination from sewage to cause the benchmark (0.03 GI) illness:
 - 8600 Bacteroides HF183 genome copies L⁻¹

Alternatives to BAU-Septic/leachfield

20 Septic

(UD-SS) Urine diversion toilet w/ blackwater & greywater septic system, municipal water supply

(BE-GR) Blackwater-only sewer w/ biogas electricity generation, treated greywater reuse for washing & irrigation

Greywater

Blackwater Sewer Treated

(BE-GRR) Blackwater-only sewer w/ biogas electricity generation, treated greywater & rainwater reuse for washing & irrigation

Greywater Rainwater

Treated

Blackwater Sewer Treated

Human Health RA

Pathogens

21

- -Three reference pathogens selected for Cape Cod: Human norovirus, *Campylobacter, & Cryptosporidium*
- -Dose estimates: household & recreational exposure routes
- -Infection risks to disability-adjusted life years (DALYs)

Disinfection by-products (DBPs)

- -The highest-risk class of chemicals associated with water & urban living (bladder cancer)
- -Focus on chloroform & bromodichloromethane
- Key human health risk trade-off:
 - -Use of rainwater with no DBP via hot water, but increased potential risk from pathogens

Example annual risks by ref. pathogen Illness (DALY) for on-site systems

	Norovirus	Campylo- bacter	<i>E. coli</i> O157:H7	Crypto- sporidium
DALY/illness	1.6×10 ⁻³	4.6×10^{-3}	5.5×10^{-2}	1.7×10 ⁻³
BAU rec water	6.1 × 10 ⁻² (2.2 × 10 ⁻³)	-	-	-
Greywater reuse	5.2×10 ⁻⁴	-	-	-
Rainwater use	-	7.9×10 ⁻⁸ (negligible)	1.3×10 ⁻⁴ (7.7×10 ⁻²)	1.4×10 ⁻³ (2.3×10 ⁻²)

Pathogen risks >> DBP, and most risk via GI illness

Assuming 10% of pop of 10,000 swim in nearby waters, 22% consume salad crops with reuse. EPA health threshold for rec water GI is $7x10^{-3}$

22

L. pneumophila only 2.7×10^{-7} annual probability of illness with RWH but not assessed via household plumbing (could be similar risk to that with potable water.

Summary

- Risk-based targets can be established by QMRA, backed up by epi information
- QMRA has been used to set critical limits at points of exposure and at upstream control points for surrogates (WSP)
- Pathogen surrogates need to be used as performance criteria (viral, bacterial, protozoan)
- Should allow for innovation, not limit on-site technologies to specific systems/controls

Acknowledgements

Mary Schoen (EPA)

