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• Context  
– Increasing interest in fit for purpose water reuse 
– Limits of conventional indicator organism approaches 

• Approach  
– Quantitative Microbial Risk Assessment (QMRA) to 

define treatment requirements 
– Performance monitoring approaches  

• Rationale for moving away from traditional microbiological 
indicators  

• On-line, non-biological surrogates linked to treatment 
requirements 

• Alternative microbiological targets (infrastructure 
microbiome?) 

Overview 
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Precipitation collected 
from roofs and above-
grade surfaces 

Precipitation 
collected at or 
below grade 

Nuisance groundwater 
from dewatering 
operations 

Wastewater from 
clothes washers, 
bathtubs, showers, 
and bathroom sinks  

Wastewater from 
toilets, dishwashers, 
kitchen sinks, and 
utility sinks 
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• Graywater  
– O’Toole et al. (2012) 

• A total of 185 greywater samples (laundry, bath) from 93 households in Australia  
• Analyzed for fecal indicator E. coli, pathogenic E. coli, and key viral pathogens 

(enterovirus, norovirus, rotavirus) 
• No association between the presence of indicators and the presence of pathogens 
• Norovirus was detected when the fecal indicator bacteria was not (7% of samples) 
• Not surprising given the fact that pathogen shedding is highly variable 

• Rainwater 
– Ahmed et al (2012)  

• Event driven, non-human fecal sources –lead to highly variable pathogens detections 
– Simmon et al. (2008) 

• Legionella outbreak from rainwater drinking water system  
• Importance of “environmental” pathogens (rather than host associated) 
• To add to the complexity, source of the Legionella was linked to aerosols from a 

pressure washer at a nearby marina 

Traditional Indicators Are Not Predictive of Pathogen Levels in 
Alternative Waters  
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So Need to Start By Defining the Necessary 
Treatment To Meet Acceptable Risk    
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Quantitative 
microbial 

risk 
assessment 

(QMRA) 
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Problem formulation & Hazard  identification 
Describe physical system, selection of reference  
pathogens and identification of hazardous events 

STEP 1 
SETTING 

Dose-Response (Pinf ) 
Selection of appropriate models for each 

pathogen and the population exposed 

STEP 3 
HEALTH EFFECTS 

Risk Characterization 
Simulations for each pathogen baseline and event  

 infection risks with variability & uncertainty identified 

STEP 4 
RISK 

Alternative water  
Pathogen concentrations 

Treatment (UV/Cl2)  
Pathogen removal 

Ingress 
Ingress pathogen 

Non-potable exposures 
Volume water consumed 

STEP 2 
EXPOSURE 

(Pingress) 
Cistern storage 
Pathogen loss 

(sediment/biofilm/death) 
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QMRA – Analytic Framework 
Explore system 
risks (QMRA) 

Prioritize system 
risks  

Identify control 
surrogates & 
control levels 

Research 
knowledge gaps 

Reassess 
system 
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• Focused on on-site domestic and commercial systems (not 
centralized systems) 

• Review publications that a) recommended technology 
performance standards or b) estimated  health risks from 
microbial exposures 

• Evaluated graywater, rainwater, stormwater, foundation 
drainage, and blackwater (using SF PUC definitions) 

• Focused on non-potable uses, but not agricultural 
production 
 

QMRA of Non-Potable Reuse of Alternative 
Water Sources: A Literature Review 
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• Each water and use combination requires a unique pathogen reduction so 
that the water can be considered “safe” 

 

• There are reuse applications for which the human health risk has not been 
characterized 

– On-site  blackwater or mixed wastewater, Foundation drainage reuse, etc.  
 

• Adoption of previously calculated pathogen reductions for on-site systems 
requires careful consideration so that waters can be considered safe 

– Differences in pathogen densities and occurrence between centralized and on-site 
systems 

– Need to account for sporadic nature of pathogen occurrences and treatment 
performance variation 
 

• Review has been published (Schoen and Garland 2015, Microbial Risk 
Analysis) 

Conclusions of QMRA Literature Review 
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• Characterize pathogen density in on-site collection systems 
– Distinction from municipal wastewater/failure of indicator paradigm 
– Direct monitoring data needed 

 

• Incorporate pathogen intermittency 
– Important for small-scale systems where pathogens may not be routinely present 
– Implications for determination of annual risk 

 

• Improve exposure models 
– Are people really exposed to 0.01 mL from toilet flushing?  (NRMMC 2006) 
– Need realistic science-based assumptions, but also need to consider 

failure/accidental exposure 
 

• Independent Advisory Panel: Technical Requirements for Public Health 
Standards for Onsite Water Systems 

– Working with the expert advisory group so that this information, contained in 
separate publication(s), will be referenced in the framework document 

Current work on-going to refine models/estimates 



12 

• 8-story, 800-person 
“office building” 

• 33 greywater samples 
collected from sinks, 
water fountains, and 
showers (combined) 

• Detection Rate 
– GI    6.1% 
– GII 27.3% 

• Average Concentration 
– GI  3.38 log copies/L 
– GII 3.47 log copies/L 
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How do we quickly and effectively monitor 
the treatment performance of a system? 
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What About Monitoring? 

• Process indicator  
– Demonstrates efficacy of a process (treatment) 

• Could use common water quality parameters  
– Preferably using real or near real-time sensors 
– Need to be validated as an accurate predictor of 

treatment performance  
• But what about biologically based process 

indicators? 
– Consistently present in sufficiently high numbers to 

measure necessary dynamic range required by log 
removal estimates  
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Indicator Organisms (IO) in Graywater 

• No correlation between E. coli and gastroenteritis or 
E. coli and Norovirus occurrence (O’Toole, 2012) 

• IO can grow ~1-2log10 in graywater (Ottosson, 2003) 

Indicator 
Graywater 
log10/100mL 

Wastewater 
log10/100mL 

E. coli 0 - 6 4 - 6 
Enterococci 0 - 4 4 - 6 
Sulfite-reducing clostridia 0 - 3 3 - 6 
Coliphage (Somatic and F-RNA) 0 - 3 6 - 7 
From: Ottosson (2003), Gilboa (2008), Winward (2008) 
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Quantification of Select Targets 
In Laundry Water 

Mean log10 copies ± SD of qPCR targets (Hmt = HmtDNA, Bac = Bacteroides spp., hBac = human-specific 
Bacteroides,  Enc = Enterococcus spp., Pse = Pseudomonas spp., Cory = Corynebacterium, Propi = 
Propionibacterium, Staph = Staphylococcus spp., StaphA = S. aureus) in laundry graywater.  
Adenovirus not found in any sample 
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• Enterococci and E. coli levels not sufficiently  high 
to quantify 5log10 reduction 
– Can only measure average of 1-2log10 reduction 
– Measure 0log10 reduction 30% of the time 

• Endogenous marker can measure up to 6.4log10 
reduction 
– Can measure ≥5log10 reduction 85% of the time 
– Can measure average of 5.5log10 reduction 

 

Log10 Reduction In Graywater Summary 
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In Search of Endogenous Bacterial Markers in Graywater 

• 52 graywater samples from two distinct graywater 
sources 
– Colorado State University (CSU) system (Ft. Collins, CO) 

o Dormitory including 14 residence halls 
o 14 showers and 14 sinks (28 person capacity) 
o Composited in 946L equalization tank 

– University of Cincinnati (UC) athletic department’s 
commercial washing machine (Cincinnati, OH) 
o Launder ~10-30 garments per wash 

• Analyzed by pyrosequencing 16S rRNA gene 
– Classification to genus level of characterized bacteria 
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CSU Recycling System Schematic 
Potable Water 

Sample 

Potable Water (PW): n=1 
Shower/Handwash (SH): n=18 
Equalization Tank (ET): n=6 
Building Control (BC): n=3 
 
 

HRT<20hr 

Building 
Control Sample 
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UC Commercial Washer 

Laundry (LA): n=24 



23 U.S. Environmental Protection Agency 02/08/2016 

• Infrastructure-associated bacteria are the most 
abundant bacteria in graywater recycling systems 
– Suspended/attached growth or persistence of 

organisms in plumbing drain lines/equalization tank 

• Skin-associated bacteria are the most abundant 
bacteria shed from humans 
– Most abundant in laundry 
– Present but variable in graywater recycling system 

 
 

Conclusions from Bacterial Metagenomics of 
Graywater 
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Sequence Statistics 

Sample 
Type 

Number of 
Samples 

Average Number of 
Genera Detected 

Total Number of 
Genera Detected 

SH 18 86 191 
ET 6 53 90 
BC 3 82 107 
PW 1 37 37 
LA 24 105 295 

• Over 1.8 million raw reads generated 
– Average over 35,000 raw reads per sample 
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LA      SH     BC  PW  ET 

****** 

Infrastructure-associated 
bacteria 

Human-associated 
bacteria 

Log10-scale Heat Map of Genera Detected 

Adapted from Keely (2015)  



Are Bacteriophage Better Targets? 

• Viruses that infect bacteria 
 

• Abundant – 10x more than 
bacteria 
 

• Relevant – biologically similar to 
viral pathogens 
 

• Challenges for Characterizing 
“Phageome” 

– No universal gene  
– Need to remove prokaryotes, 

archaea and eukaryotes 

From Hargreaves et al. 2014. Bacteriophage 4:e29866, doi: 
10.4161/bact.29866 

http://dx.doi.org/10.4161/bact.29866
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Working With Partners  

Sample on-site collected waters 

Characterization of pathogens 
(density and occurrence) 

Improve QMRA models 

Model risks associated 
with reuse of untreated 

water 

Determine risk-based 
reduction requirements 

Next-gen sequencing and phage 
analysis 

Identify candidate 
monitoring targets  

Evaluate candidates in 
lab/pilot studies 

Determine alternative 
indicators of system 

performance  



 
 
So….  
 
Putting this all together 

28 



Pathogen Occurrence  

Dose Response Exposure Routes 

Quantitative  
Microbial  Risk 

Assessment  
Alternative Source 

Waters & Uses 

Log Reduction  
Requirements  

    Validated Performance  
              Surrogates 

   Spiking Experiments with 
 Pathogens/Novel Indicators 

      Effective Strategies   
      for 1) Near Real Time  
       Monitoring, and  
       2) Periodic Assessment   

Water 
Treatment 

System  

Foundational Research  

 Safe Water Recycling 

Operation  

System  
Testing  

Alternative Systems,  
Source Waters & 

Uses 

Identifying Research Gaps,  
Refining Models 

   Endogenous Organisms &  
       Chemical Parameters  
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